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Molecular-dynamics-derived numerical probability density functions (PDFs)

have been used to illustrate the effect of different models for thermal motion on

the parameters refined in a crystal structure determination. Specifically,

anharmonic curved or asymmetric PDFs have been modelled using the

traditional harmonic approximation and the anharmonic Gram–Charlier series

treatment. The results show that in cases of extreme anharmonicity the mean

and covariance matrix of the harmonic treatment can deviate significantly from

physically meaningful values. The use of a Gram–Charlier anharmonic PDF

gives means and covariance matrices closer to the true (numerically determined)

anharmonic values. The physical significance of the maxima of the anharmonic

distributions (the most probable or mode positions) is also discussed. As the

data sets used for the modelling process are theoretical in origin, these most

probable positions can be compared to equilibrium positions that represent the

system at the bottom of its potential-energy surface. The two types of position

differ significantly in some cases but the most probable position is still worthy of

report in crystal structure determinations.

1. Introduction

One of the most important considerations in determining

crystal structures is the fact that the atoms in the crystal of

interest are not actually static: zero-point energy and thermal

excitations lead to a variety of atomic and lattice vibrations,

which have a big impact on the information obtained using

diffraction methods. The vibrations occur on short timescales

compared to the data-collection time with two important

consequences. First, the raw structure determined by diffrac-

tion is time averaged over these motions and represents the

mean atomic configuration. Secondly, the condition for

maximally constructive interference and Bragg scattering is

only fulfilled for the time that the mean position is occupied.

The result of the latter is that thermal motion attenuates the

diffraction intensities. This attenuation is an unwelcome

problem for data collection but the necessary modelling of

thermal motion required to rectify it can lead to very useful

information on the displacements of atoms in a crystal. Such

information is naturally complementary to spectroscopic

methods, which give information on energetics.

Thermal motion is accounted for in the structure factor

using the Debye–Waller factor (Debye, 1913; Waller, 1923). A

plethora of forms for the Debye–Waller factor have been

proposed in the literature, ranging from simple one-parameter

harmonic treatments to complex statistical models. The

different treatments of thermal motion can lead to a variety of

different parameters that can be used to define and assess a

crystallographic structure and its dynamic behaviour. Under-

standing the meaning of and the differences between these

parameters is difficult because of the need for high-quality

data, limitations in anharmonic models and the fact that not all

of the desired information is accessible by diffraction experi-

ments alone.

In the present work, we have used molecular-dynamics

(MD) simulations to provide a theoretical viewpoint on

the crystallographic interpretation of thermal motion. In an

MD simulation the atomic forces in a system are calculated

(either from an empirical force field or some form of

quantum mechanics) and are used to follow the dynamics of

the system over time. We show that the resulting trajectories

can be used to carry out theoretical investigations of the

different treatments of thermal motion and their effect on

the determined parameters. This analysis is performed in

real space only and therefore additional issues that arise

in experimental structure determinations (i.e. the need to

perform analysis in reciprocal space) are not present here.

The relationship between the different structural parameters

is the focus of this paper, while the use of MD data

sets in assessing and developing new Debye–Waller factors
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will be shown in the second paper in this series (Reilly et al.,

2011).

2. Modelling thermal motion in crystallography

2.1. Debye–Waller factors

The Debye–Waller factor can be derived from a number of

different starting points (Kuhs, 1992). Indeed, as well as

describing thermal motion it can account for static disorder in

a crystal structure (Kuhs, 1983) and can have contributions

from systematic errors (Trueblood et al., 1996). In the present

work we are interested solely in its ability to model thermal

motion, in which case the structure-factor equation takes the

form

hFðQÞi ¼
PN
n¼1

fnP̂PnðQÞ expðiQ � rn0Þ; ð1Þ

where P̂PðQÞ is the Debye–Waller factor. The real-space

Fourier transform of the Debye–Waller factor, PðuÞ, describes

the three-dimensional thermal motion of an atom in the mean

field of all the other atoms in the lattice, and thus attenuates

the scattering intensity in line with the fact that an atom

spends time away from the mean position that optimally

satisfies the condition for Bragg scattering.

The functional form of P̂PðQÞ, and hence PðuÞ, plays an

important role in the structure factor. The better the repre-

sentation of thermal motion the better the quality of a fit to

experimental intensities will be, ensuring that the determined

structure is physically reasonable. PðuÞ is most often

approximated as being a trivariate Gaussian distribution,

thereby allowing harmonic motion along three separate axes.

The mathematical expression for this is given by (Kuhs, 1992;

Johnson, 1969)

PðuÞ ¼
½detðU�1Þ�

1=2

ð2�Þ3=2
exp �

1

2
uTU�1u

� �
; ð2Þ

where U is the symmetric, 3� 3 variance–covariance matrix of

the distribution, whose elements Uij equal huiuji. Subscript

indices are used on the components of u, as in the present

work a Cartesian basis is always used. See Trueblood et al.

(1996) for detailed recommendations on the notation of

probability functions and Debye–Waller factors in crystal-

lography. If i ¼ j then Uii represents the variance (the mean-

square displacement from the average position) or extent of

the thermal motion along a particular axis. When i 6¼ j, Uij

gives the covariances of the thermal motion, which give the

orientation of the distribution relative to the axis system of

choice. Taking the Fourier transform leads to

P̂PðQÞ ¼ exp �
1

2
QTUQ

� �
: ð3Þ

The six unique elements of U usually have units of Å2 and

are referred to as the anisotropic displacement parameters

(ADPs) (Trueblood et al., 1996), although other names and

forms for them are given in some older papers. The trivariate

or anisotropic approximation can lead to significantly better R

factors than a simpler isotropic model and is routinely used in

small-molecule X-ray and neutron diffraction.

The trivariate Gaussian probability density function (PDF)

corresponds to a harmonic model of thermal motion where

atomic motions are resolved into three components along

orthogonal axes. Such an approximation represents a good

balance between the quality of the model and the number of

parameters needed to describe the system. However, for some

systems the approximation can be inadequate. One of the

earliest examples of this is provided by Cruickshank (1956),

who showed that the librational or curvilinear motion of an

atom relative to another can lead to apparent shortening of

bond lengths as the mean position of an atom is shifted from a

physically reasonable location towards the centre of rotation

(Schomaker & Trueblood, 1998). Intramolecular distances can

be corrected a posteriori for this effect using the TLS method

(Schomaker & Trueblood, 1968). The source of the problem is

the harmonic nature of the Gaussian distribution. As the mean

position is also the most likely or probable one, the PDF is

incapable of properly modelling a distribution that is skewed

or bent or otherwise has mean and most likely positions that

do not coincide.

A variety of anharmonic Debye–Waller factors have been

proposed in the past, using methods such as the one-particle

potential approach (Willis, 1969; Tanaka & Marumo, 1983),

the Edgeworth series (Johnson, 1969) and the Gram–Charlier

(GC) series (Zucker & Schulz, 1982). These approaches

generally involve some form of Taylor expansion of the

harmonic approximation. The most widely used and recom-

mended method is based on the GC series (Trueblood et al.,

1996). This involves an expansion of the harmonic PDF using

high-order quasi-moments (Kuznetsov et al., 1960), cijkl, and

Hermite polynomials, Hijkl:

PGCðuÞ ¼ PðuÞharm

�

�
1þ

1

3!
cijkHijkðuÞ þ

1

4!
cijklHijklðuÞ þ . . .

�
; ð4Þ

where PðuÞharm is a standard trivariate Gaussian PDF and all

indices that appear twice are implicitly summed over. The

corresponding Debye–Waller factor is

P̂PGCðQÞ ¼ P̂PharmðQÞ

� 1� icijkQiQjQk þ cijklQiQjQkQl þ . . .
� �

: ð5Þ

The odd-order terms skew the distribution, while the even-

order terms affect its ‘peakedness’ or physical extent.

The use and implementation of anharmonic Debye–Waller

factors have been limited for a number of reasons. Anhar-

monic Debye–Waller factors require many more parameters:

equations (4) and (5) feature ten unique third-order and 15

unique fourth-order coefficients. In addition, the interpreta-

tion of the quasi-moments etc. that are derived from the

anharmonic models is difficult. Visualization and other

subtleties of their use complicate matters further. The rather

generic approach to obtaining anharmonic forms of P̂PðQÞ is a

result of the fact that little independent information is avail-

able on the true nature and, perhaps more importantly, the

Acta Cryst. (2011). A67, 336–345 Anthony M. Reilly et al. � Molecular-dynamics simulations. I 337

research papers



effect of anharmonic motion on refined structures. The focus

of the present work is to illustrate how MD simulations can

bridge this gap in our knowledge of anharmonic effects,

providing useful test data sets to assess and develop the

various models used to describe anharmonic motion and to

increase our understanding of them.

2.2. Positional parameters

The position rn0, which appears in the structure factor is, by

definition, the mean position, ra, and represents the average

position adopted by the atom over the course of time. In turn,

the refined value of the position is dependent on the func-

tional form of the PDF used to describe the thermal motion of

an atom. The PDF and Debye–Waller factor are centred on

this mean position so that

huii ¼
R1
�1

uiPðuÞ du ¼ 0: ð6Þ

Only when the approximate PDF correctly models the true

PDF is the refined mean guaranteed to be the true mean

position.

The mean is not the only parameter that we might

determine in a diffraction experiment. In a harmonic

description of thermal motion the ‘most probable’ position

that represents the maximum of the PDF coincides with the

mean position. In an anharmonic distribution this is not

necessarily the case and a separate most probable position,

denoted here rp, can be defined (Johnson, 1969). While such a

position is not directly determined from the refinement

process it can be obtained from the numerical or analytical

maximum (or mode) of the anharmonic PDF. The most

probable position also represents the minimum of the three-

dimensional effective potential-energy surface that describes

the mean-field behaviour of an atom. It should be a more

reasonable description of the molecular structure, particularly

with respect to bond lengths.

The final type of position is the equilibrium position, re. This

represents the vibrationless structure of the molecule at

the minimum of the ð3N � 3Þ-dimensional potential-energy

surface of the crystal, corresponding to the maximum of the

ð3N � 3Þ-dimensional PDF that completely describes thermal

motion. The three-dimensional PDFs determined in a

diffraction experiment are marginal distributions of this PDF;

for a given atom they represent the total PDF integrated over

all of the other atoms in the unit cell (Scheringer, 1986). In

integrating out the information on other atoms the probable

structures will not necessarily correspond to the equilibrium

one because the correlations between atoms cannot be

obtained from a single experiment.

The equilibrium structure is the most desirable one, as it

permits the direct comparison of structural parameters of

different molecules, phases, polymorphs etc. in the absence of

any thermal-motion effects. In addition, equilibrium structures

are easily obtained from theoretical calculations. The growth

of ab initio and density functional theory (DFT) structural

studies, particularly in the solid state, makes comparison

enviable for validating the various computational approaches.

Average structures can be distorted by thermal motion, which

will be different for different systems and temperatures. The

most probable structure ignores the correlations between

atoms and may also give spurious values as a result.

2.3. MD simulations

Relating the different structures that we might determine

for a molecule is difficult because experiment alone cannot

access all of the information. In particular, the equilibrium

geometry cannot be readily obtained because the PDFs

determined in an experiment represent only the marginal

distributions of the total ð3N � 3Þ-dimensional potential-

energy surface upon which the equilibrium structure lies. An

alternative approach would be to use theory to estimate this

information. We have recently developed a method of deter-

mining experimental equilibrium structures using MD simu-

lations (Reilly et al., 2007). The simulations determine the

theoretical or computed time-averaged structure. Comparison

of this with a computed equilibrium structure yields correc-

tions that can be applied to an experimental time-averaged

structure to estimate the experimental equilibrium structure.

The true equilibrium structure of a crystal is represented by a

motionless system at 0 K. While, in principle, for some systems

experimental results could be extrapolated to 0 K, for some

phases or polymorphs it will be impossible to experimentally

estimate 0 K behaviour. Therefore the experimental equili-

brium structures determined using MD simulations (including

those discussed here) represent effective equilibrium struc-

tures for unit cells at particular temperatures.

The MD simulations also provide a picture of where each

atom spends its time in space. Such information can be used to

determine the full ð3N � 3Þ-dimensional PDF describing the

thermal motion in the system and therefore leads to the

information on diffuse scattering and interatomic correlation,

which is lost in a normal diffraction experiment. Our focus in

the present work is on the relationship between the various

different structure parameters (ra; rp and re) as far as they can

be determined with Bragg scattering experiments.

By numerically ‘binning’ the MD trajectory of each atom we

can determine the three-dimensional atomic PDFs that the

structure factor aims to model in a standard refinement. These

PDFs can be modelled with any function and can be used to

understand how the different structural parameters relate to

one another and how the nature of the approximate PDF/

Debye–Waller factor affects the fitted parameters. As we can

also compare the ‘refined’ data with the theoretical equili-

brium structure, we can, for the first time, compare time-

averaged harmonic and anharmonic structures with equili-

brium parameters without any approximation or assumptions

being required as to how theory and experiment relate to one

another. Thus, molecular dynamics provides the ideal data sets

for assessing the various approximations that can be made in a

crystallographic refinement. Even where theory cannot repli-

cate the true experimental behaviour exactly, the MD-

simulated results will still represent a physically realistic and
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consistent data set for understanding the refinement process

and the different parameters it can produce.

3. Simulation and analysis methods

3.1. Nitromethane and ammonia

The crystal structure of d3-nitromethane has been the

subject of numerous structural studies (David et al., 1992;

Jeffrey et al., 1985; Trevino et al., 1980) that have focused on

the large-amplitude curvilinear motion of the deuterium

atoms in its methyl group. We have recently employed MD

simulations to determine the experimental equilibrium struc-

ture of this molecule (Reilly et al., 2010b), showing highly

anharmonic PDFs not only for the D atoms, as expected, but

also for the O atoms at higher temperatures. The comparison

between the simulation results and neutron diffraction

experiments at low temperatures was favourable, with the

ADPs in many cases agreeing within error with the experi-

mental values. The simulations were also able to reproduce the

low-temperature TLS vibrational corrections to the C—D

distances. These MD simulations used a classical force field to

determine the interatomic forces. To ensure that the primarily

low-temperature quantum behaviour was modelled correctly

the path-integral method (Feynman & Hibbs, 1965) was used

to propagate the trajectory. In the present work the results of

the simulations at 15 and 228 K are used as model data sets for

comparing the different parameters refineable from crystal-

lographic data. See Reilly et al. (2010b) for more details about

the simulations, and comparison of the experimental and

simulated means and variances.

The D atoms of nitromethane are an extreme example of

curvilinear motion, whereas phase-1 deuterated ammonia,

ND3, is a more typical demonstration of librational motion and

has also been studied using MD simulations (Reilly et al., 2007,

2010a). The results of our previous DFT simulations are

employed here. A detailed comparison of DFT and force-field-

derived results with experimental data is presented elsewhere

(Reilly et al., 2010a).

3.2. Urea–phosphoric acid (1:1)

The 1:1 adduct of urea and phosphoric acid (UPA) has

attracted considerable interest in the literature owing to the

short, strong hydrogen bond between the urea oxygen proton

and an oxygen of phosphoric acid (Fig. 1). UPA has been

studied using neutron diffraction (Wilson, 2001; Wilson et al.,

2001) and computational methods, including plane-wave DFT

(Wilson & Morrison, 2002; Morrison et al., 2005; Fontaine-

Vive et al., 2006). The experimental and theoretical results

show that the proton migrates from the urea to the phosphoric

acid as a function of temperature, and that its effective

potential/PDF is likely to be skewed, particularly at lower

temperatures.

MD simulations of UPA were performed at 150 and 350 K.

The simulations were carried out on single unit cells (fixed at

experimental cell vectors) with full periodic boundary condi-

tions used to replicate the long-range order and interactions of

the real crystal. The Car–Parrinello method (Car & Parrinello,

1985) was used as incorporated into the CPMD simulation

code (CPMD, 2008). The time step for the MD simulation was

0.0725 fs. The Car–Parrinello method models not only the

dynamics of the nuclei but also the faster electron dynamics

and therefore a smaller time step than would normally be used

in a force-field-type MD simulation is required. The electronic

structure of UPA was represented using a plane-wave basis set

with a cutoff energy of 1400 eV. This value represents the

convergence of the plane-wave basis in terms of its highest-

energy wavevector. A larger value leads to negligible changes

in the total energy and individual atomic forces. The core

electrons were represented using Troullier–Martins norm-

conserving pseudopotentials (Troullier & Martins, 1991). The

Perdew–Burke–Ernzerhof functional (Perdew et al., 1996) was

used to model the exchange and correlation energies.

The temperature was regulated using a chain of Nosé–

Hoover (Nosé, 1984; Hoover, 1985) thermostats for the nuclei

and the electrons. The 150 K MD simulation was run for a

total of 24 ps, while the 350 K simulation was run for 30 ps,

with data being collected every fifth Car–Parrinello time step

in both simulations. The short running time is a constraint

of using computationally expensive DFT-derived forces.

However, even with such short simulation lengths we can

resolve low-frequency vibrations (see for example Reilly et al.,

2008) and the use of the crystal symmetry (as detailed below)

for averaging of the data ensures we maximize the available

information.

3.3. Trajectory analysis and fitting of probability density
functions

The true anharmonic mean, hui, can be calculated directly

from the trajectory using a numerical version of equation (6),

hui ¼ ðhu1i; hu2i; hu3iÞ; ð7Þ

given that

huii ¼
1

N

XN

n¼1

ui;n; ð8Þ

where N is the total number of steps the average is calculated

over and ui;n is the value of ui at step number n. The true
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covariance matrix, Uanharm, can be calculated in a similar

fashion:

U
ij
anharm ¼ hðui � huiiÞðuj � hujiÞi ¼ h�ui�uji: ð9Þ

The sampling error in these quantities can be estimated using

the central limit theorem (Allen & Tildesley, 1989), while

correlations in the data can be accounted for using the

blocking method (Flyvbjerg & Petersen, 1989). Fortran code

was written to calculate the true, anharmonic values of the

mean and variance using equations (8) and (9); the parameters

determined in this fashion will be referred to as the ‘numer-

ical’ mean and variance. In performing the analysis the full

space-group and translational symmetry of the simulation cell

(which in some cases represented a supercell of the crystal-

lographic unit cell) were used to maximize the data set.

The MD trajectories were used to determine numerical

PDFs by ‘binning’ each position adopted by an atom over the

course of the MD simulation. This procedure results in three-

dimensional histograms, which when normalized yield a PDF.

The distribution consisted of 1003 points for ammonia and

UPA. Two-dimensional and one-dimensional PDFs that

represent marginals of the three-dimensional PDF with one or

two variables integrated out were determined in a similar

fashion. Where the three-dimensional distribution was deter-

mined ‘on the fly’, the one-/two-dimensional distributions

were determined by numerical integration of the three-

dimensional distribution (over the full range of the numerical

distribution) and re-normalization. For nitromethane the ‘on-

the-fly’ distributions were determined with a histogram of 2003

points, which was then orientated and re-binned to produce a

coarser PDF (1003 points), which was found to be more than

sufficient for fitting the PDFs. An artefact of this process was

the introduction of some high-frequency noise into the data

sets. As the analytical PDFs can only model the low-frequency

features of the distribution, the quality of the fit of these

re-orientated data sets is not affected relative to the un-

orientated data sets. However, to aid visualization, a low-pass

Fourier filter may be applied to the numerical distribution.

In most cases the histograms were determined in the

coordinate system of the harmonic approximation so the

distributions were centred on the numerical mean and orien-

tated so that U
ij
anharm ¼ 0 ði 6¼ jÞ, with the longest principal

axis directed along the x axis and the shortest along the z axis.

Visualization and manipulation of the data are greatly

simplified in this coordinate system.

The versatile program Mathematica (Wolfram Research

Inc., 2007) was used to determine the best fits of the harmonic

and anharmonic models to the numerical PDFs in real space.

In addition, it was also used to determine the maxima (i.e. rp)

of the anharmonic distributions and the uncertainties and

correlations (analytically) for the refined parameters.

4. Results and discussion

4.1. Harmonic and anharmonic means and variances

The Gaussian approximation of thermal motion has

remained the most widely used method in crystallography

because of its simplicity. The functions involved can be readily

implemented in refinement software and the values of para-

meters determined can be interpreted with ease. It determines

the mean (or time-averaged) position of the atom and the

variance of the PDF. The variance is in part a measure of the

size or extent of the PDF and therefore how far the atom

moves from the mean position. In contrast, the statistical

methods for incorporating anharmonicity involve much more

complex equations and yield parameters such as quasi-

moments that are difficult to relate to the physics or chemistry

of the crystal in question. However, it is important to note that

the mean and variance determined from a harmonic fit may

differ from the true mean, hui (the average position adopted

by the atom over time), or variance, hu2i (the average square

displacement from the mean), that is obtained from the true

probability function, P, by integration:

hun
i ¼

R1
�1

unPðuÞ du: ð10Þ

This is the case both for real-space (as done here) and

reciprocal-space fitting of data. If the distribution is centred on

the mean then hu1i ¼ 0 and hu2i is the variance. Some forms of

anharmonic PDF are formulated so that the mean and

variance are determined directly as the parameters of the

harmonic part of the PDF.
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Table 1
Harmonic and anharmonic mean of selected atomic PDFs with origin, (0; 0; 0), representing the numerical mean.

The indices of the nitromethane atoms refer to those used in the previous crystallographic studies of nitromethane (Jeffrey et al., 1985). The PDFs have been
orientated such that Uij ¼ 0 for i 6¼ j.

Harmonic mean (Å) Anharmonic mean (Å)

Atom T (K) x y z x y z

D-ND3 180 �0.0037 (2) �0.0056 (2) �0.0027 (1) �0.0021 (4) �0.0005 (3) 0.0010 (3)
C-MeNO2 15 �0.0001 (2) �0.0007 (2) �0.0002 (1) 0.0000 (3) 0.0000 (2) 0.0001 (2)
D1-MeNO2 15 0.0077 (3) �0.0031 (1) �0.0087 (1) �0.0005 (4) 0.0006 (2) 0.0009 (1)
O1-MeNO2 15 0.0004 (2) �0.0006 (2) 0.0013 (1) 0.0000 (3) �0.0001 (3) �0.0002 (2)
C-MeNO2 228 �0.0029 (1) �0.0006 (1) �0.0015 (1) �0.0002 (2) 0.0001 (2) �0.0008 (2)
D1-MeNO2 228 0.0072 (5) 0.0085 (3) �0.0151 (1) �0.0088 (7) 0.0243 (3) 0.0259 (3)
O1-MeNO2 228 0.0051 (1) �0.0048 (1) 0.0071 (1) �0.0005 (3) 0.0000 (2) 0.0000 (1)
H-UPA 150 �0.0011 (1) �0.0028 (1) 0.0009 (1) 0.0018 (3) �0.0007 (2) �0.0006 (1)
H-UPA 350 �0.0070 (3) 0.0046 (3) �0.0005 (2) 0.0043 (6) 0.0033 (5) �0.0007 (4)



There have only been a few studies that have considered the

difference between the harmonic and anharmonic values.

Scheringer (1986) has shown that the differences between the

harmonic and anharmonic mean bond lengths (i.e. the distance

between the mean position of two atoms) of urea were of the

order of 0.002–0.01 Å at room temperature. Assessing the

significances of such differences is difficult in experiments

owing to the non-convergent nature of many of the anhar-

monic methods used to determine such mean positions. By

fitting the numerical MD-derived data sets in real space we

can compare the anharmonic and harmonic means to the true

value for the first time, without resorting to any approxima-

tions or assumptions.

4.1.1. Means. The difference between the mean obtained

from harmonic and anharmonic models can be assessed by

fitting the MD-derived PDFs to a harmonic PDF and to a GC

PDF, respectively. These values can then be compared to the

‘true’ numerically determined values. Because of the centring

of the numerical data sets the mean position refined by the

harmonic and anharmonic PDFs corresponds to the difference

between the different models and the ‘true’ numerically

evaluated value. The GC series PDF is of the same form as

equation (4). The third-order Hermite polynomials, Hijk, used

in this equation are centred on the mean position (where u = 0

by definition). This expression results in the correct definition

of the Debye–Waller factor for use in crystallographic

refinements but for refinements of the numerical PDFs in real

space it is necessary to include parameters for the mean in the

polynomials.

Table 1 lists the mean positions (x; y; z) obtained by fitting

the numerical PDFs for ammonia, nitromethane and UPA to a

Gaussian PDF and a third-order GC series PDF. In general,

the difference between the numerical (i.e. the raw MD) and

harmonic means is less than 0.01 Å. Only for the D1 atom of

nitromethane at the high temperature of 228 K is the value

larger than this. For all but one case, the use of the GC series

improves the agreement between the fitted mean and the

numerical value. For the D1 atom at 228 K the agreement is

made worse but the strong, curvilinear anharmonicity of the D

atoms in nitromethane is difficult to represent adequately with

just a third-order GC series (see Reilly et al., 2011, for more

details on the importance of the fourth-order terms). The

number of values in Table 1 is not enough to draw any wide

conclusions but it clearly illustrates that differences between

the parameters can occur and they can be more significant

than typical experimental uncertainties. It is encouraging that

the differences are relatively small (even at high tempera-

tures) and that, in general, the anharmonic model improves

the agreement. This means that the harmonic model is

adequate for getting a good picture of the structure and esti-

mating the mean positions. Even the values for the D1 atom of

nitromethane are small in comparison to the equilibrium

positional corrections that are discussed elsewhere (Reilly et

al., 2010b).

4.1.2. Variances. The variance of the PDF is, in principle,

affected only by even-order terms in a polynomial expansion.

A harmonic PDF models the atom as having a quadratic

energy surface. Higher-order polynomial terms permit the

potential to be broader or steeper than this. For a nearly

Gaussian distribution the three Hiiii (i ¼ 1; 2; 3) polynomials

will have the most important contributions if these poly-

nomials are directed along the principal axes of the system.

This is because in this case they are functions of only a single

variable and will therefore affect the ‘peakedness’ or kurtosis

of the three orthogonal directions separately, in keeping with

the approximation of independent variables implicit in the

Gaussian approximation. A GC series with only the fourth-

order diagonal, Hiiii, terms was used to fit a number of PDFs;

the harmonic, anharmonic and numerical values of the largest

of the three variances, U11, are given in Table 2. In the case of

the C and O atoms of nitromethane, small differences are seen

between the harmonic and numerical values. The anharmonic

fit improves the agreement in some cases but taking the

uncertainties into account the discrepancies are not signifi-

cant. However, for the D atoms of ND3 and nitromethane

large and significant differences are found between the

harmonic and numerical values. For the D atom of ND3 the

anharmonic model reduces this difference to within error. The

disagreement is particularly serious at 228 K for the D1 atom

of CD3NO2 with the harmonic value being nearly 33% larger

than the numerical value. The inclusion of the H1111 parameter

does improve the agreement significantly. A full third- and

fourth-order GC series would improve things further but

higher-order terms might still be important. Fig. 2 shows the
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Table 2
Harmonic, anharmonic and numerical values of U11 (in Å2) for a series of
atomic PDFs.

The indices of the nitromethane atoms refer to those used in the previous
crystallographic studies of nitromethane (Jeffrey et al., 1985).

Atom T (K) Harmonic Anharmonic Numerical

D-ND3 180 0.03443 (6) 0.03575 (17) 0.03555 (3)
C-MeNO2 15 0.00980 (3) 0.00978 (6) 0.00968 (1)
D1-MeNO2 15 0.08342 (10) 0.07626 (20) 0.08065 (4)
O1-MeNO2 15 0.01046 (3) 0.01049 (7) 0.01041 (1)
C-MeNO2 228 0.04646 (5) 0.04692 (10) 0.04699 (5)
D1-MeNO2 228 0.38550 (60) 0.25840 (40) 0.28068 (15)
O1-MeNO2 228 0.07803 (7) 0.07871 (10) 0.07929 (8)

Figure 2
The xz two-dimensional PDF of the D1 atom of nitromethane at 228 K,
showing the large degree of anharmonicity. (The x axis represents the
longest principal axis of thermal motion, while z is the shortest axis.)



numerical two-dimensional xz PDF of the D1 atom at 228 K,

which clearly illustrates the high degree of anharmonicity that

leads to both the harmonic and anharmonic fits deviating from

the true mean and variance values.

The data in Tables 1 and 2 highlight the importance of

remembering that the mean and variance determined by the

standard harmonic model are still primarily fitting parameters.

While they may be and often are close to or within the error of

the true mean or variance, their physical significance cannot

be taken for granted. The experimental temperature depen-

dence of the ADPs (Bürgi et al., 2000) may give an indication

of where this might be an issue, as an anharmonic dependence

of the ADPs with temperature indicates the need for anhar-

monic refinement of the data.

4.2. Most probable and equilibrium structures

A single diffraction experiment tells us about the three-

dimensional effective potential-energy surface that an atom

experiences in the mean field of the motions and interactions

of the other atoms in the system. The MD simulations allow us

to determine each atom’s mean and probable positions on this

three-dimensional surface, while geometry optimizations

yield the overall equilibrium geometry of the system on the

full ð3N � 3Þ-dimensional potential-energy surface. In the

following subsections the most probable and equilibrium

positions determined for a few molecules are compared.

4.2.1. Nitromethane. Nitromethane is again an ideal system

to compare and contrast the most probable and equilibrium

positions. The large extent of the thermal motion and its

strongly anharmonic nature ensures that limitations in the

anharmonic model (i.e. how well the GC series fits the

distribution) will not prevent comparison of the two types of

position. Table 3 lists the magnitudes of the most probable and

equilibrium corrections to the D1, D2 and C atoms at 15 and

228 K.

Considering only the most probable positions first, it can be

seen that the correction increases with temperature as would

be expected. This is also seen for the other atoms in nitro-

methane. The magnitude of the corrections is, in all cases,

significant, even at the low temperature of 15 K. Comparing

these values to the equilibrium corrections we can see that for

the D1 atom and the C atom (and indeed the other atoms not

presented in Table 3) the equilibrium correction is much larger

than the probable correction. Only in the case of D2 at 228 K

is the probable correction larger than the equilibrium one.

The difference between the equilibrium and probable

positions is surprisingly large. Fig. 3 shows the numerical two-

dimensional xz PDF of the D1 atom at 15 K with equilibrium

and third-order GC probable positions marked. It is clear that

the discrepancy is not a result of the probable position being

wrong: the GC-determined maximum is clearly very close to

the maximum of the numerial PDF, which in turn is far from

the equilibrium position. A similar situation is found for the

other D atoms as well, with the majority of the equilibrium

correction being along the longest principal axis in each case.

This implies that the methyl group rotates going from the

equilibrium to probable structure. Corrections to the heavy

atoms (i.e. the C atom) indicate that the whole molecule shifts

its position when going from the equilibrium structure to the

three-dimensional PDF average/most probable structure. The

complexity of the ð3N � 3Þ-dimensional potential surface

makes it hard to rationalize this behaviour and the analysis

and evaluation of the ð3N � 3Þ-dimensional numerical PDF

cannot easily be performed. The discrepancy of the D2 equi-

librium correction being approximately the same at both high

and low temperatures (�0.057 Å) may be explained by the

‘static’ equilibrium correction cancelling the part that arises

from thermal motion.

While the most probable and equilibrium position correc-

tions differ, this is mainly an issue of the whole molecule

shifting or translating its position. The C—D1 bond length

obtained from the most probable positions of the C and D

atoms at 15 K is 1.0886 Å. This compares very well to the

equilibrium value of 1.0880 Å, showing that while we do not

get the absolute equilibrium position of the atom it is possible

that the relative 1,2 and 1,3 positions, and therefore the most

important structural information, may be correctly modelled

by the most probable structure.
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Table 3
Magnitudes of selected probable and equilibrium positional corrections
to the numerical mean positions of nitromethane atoms along with the
migratory proton of UPA, as determined from MD-derived numerical
three-dimensional PDFs.

The GC series used are all third-order expansions except for the D atoms at
228 K, where it was necessary to add the diagonal Hiiii terms to the expansion
(see Reilly et al., 2011, for more details of why this is necessary).

Atom T (K) jrp;GCj (Å) jrej (Å)

Nitromethane
D1 15 0.0238 0.1153
D1 228 0.1951 0.2569
D2 15 0.0314 0.0562
D2 228 0.2151 0.0570
C 15 0.0016 0.0365
C 228 0.0059 0.0963

UPA
H 150 0.0225 0.0338
H 350 0.0190 0.0677

Figure 3
The xz two-dimensional PDF of the D1 atom of nitromethane at 15 K.
The black dot indicates the third-order GC probable position, while the
white dot is the equilibrium position.



4.2.2. Ammonia. For the D atom of ammonia the difference

between the probable and equilibrium corrections is much

better, with jðre � rpÞj = 0.0046 Å. The magnitudes of the

corrections are much smaller than in nitromethane, with jrej

being only 0.0176 Å. Taking the uncertainties in the positions

and the nature of the fitting process into account, the differ-

ences between the probable and equilibrium positions are not

that significant. The small size of the corrections may stem

from the much higher symmetry of the ammonia crystal

structure. This makes the potential- and free-energy surfaces

less complicated as there are only four independent degrees of

freedom.

4.2.3. UPA. The shape and temperature dependence of the

free-energy surface of the migratory proton have been of

considerable interest in recent publications (Wilson &

Morrison, 2002; Morrison et al., 2005; Fontaine-Vive et al.,

2006). The MD simulations confirm, as we might expect from

its behaviour, that the migratory proton has a non-Gaussian

PDF. At 150 K the distribution is asymmetric or egg shaped,

whilst at 350 K the distribution appears to be more Gaussian-

like (see Fig. 4). Note that the distributions feature far more

high-frequency noise compared to the nitromethane and

ammonia distributions because the size and nature of the

nitromethane and ammonia simulations permitted longer

trajectories and larger data sets. In general, DFT–MD simu-

lations will produce noisier distributions than those of force-

field simulations because of the much larger data sets available

with the faster force-field methods. It is evident from Fig. 4

that the effective potential-energy surface does have some

temperature dependence. This suggests that the full free-

energy surface will have some dependence too. It is interesting

to consider whether the three-dimensional PDF appears more

Gaussian-like at higher temperature owing to a fundamental

change in the underlying energy surface. As before, a third-

order GC series was used to model the atomic PDFs.

Considering first the H-atom positional corrections, the

magnitude of the equilibrium correction is 0.0338 Å, while the

magnitude of the most probable correction position is

0.0225 Å. At 350 K the equilibrium correction for the H atom

is 0.0677 Å but the most probable correction is only 0.0190 Å.

Just as for nitromethane, the most probable and equilibrium

corrections do not produce the same structure. The slightly

smaller, most probable correction at the higher temperature is

possibly an indication of less anharmonicity in the high-

temperature PDF.

A more direct measure of how the system changes would be

to compare the different bond lengths at the two tempera-

tures. As the two simulations were performed with different

cell vectors, the effective equilibrium positions may be

different. However, the equilibrium O—H and O� � �H

distances are not significantly affected by this; the former is

1.0990 Å at 150 K and 1.0968 Å at 350 K. In contrast, the most

probable bond lengths do change with rp O—H being

1.1089 Å at 150 K and 1.1468 Å at 350 K. Similarly, rp O� � �H is

1.3289 Å at 150 K but 1.2981 Å at the higher temperature. The

small difference in the equilibrium distances with temperature

indicates that the potential-energy surface does not change

significantly as a result of the cell expansion. If the same were

true for the free-potential surface we would expect the most

probable interatomic distances to be very similar at the two

temperatures. However, they are not. Thus an increase in

temperature must result in a flattening of the free-energy

potential surface such that rp O—H lengthens by almost

0.04 Å. This is in accordance with previous findings (Fontaine-

Vive et al., 2006).

4.3. Experimental equilibrium structures

It is always important to ask how much information we can

extract from experimental methods. The current approach to

determining experimental equilibrium structures relies on MD

simulations, which can have a significant cost in terms of

computational time and effort. While this might change with

better theoretical methods and computational hardware and

software, for the present it would be highly desirable to

determine the equilibrium geometry directly from the

experiment without the need for time-consuming MD simu-

lations.

Reconstructing the full ð3N � 3Þ PDF or potential-energy

surface from diffraction experiments would be very difficult to

achieve. The missing information in a single diffraction

experiment is the correlations between the three-dimensional

marginal PDFs. Bürgi & Capelli (2000) have shown that

some of the required correlations between the atomic PDFs,

namely the intramolecular ones, can be obtained by multi-
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Figure 4
The xz two-dimensional numerical PDFs of the migratory proton of UPA
at (a) 150 K and (b) 350 K. The proton migrates towards the left-hand
side of the figures. (The x axis represents the longest principal axis of
thermal motion, while z is the shortest axis.)



temperature experiments but for a truly anharmonic system

the number of parameters and potential for non-trivial

couplings would greatly limit such an approach.

The results of the MD simulations suggest that the most

probable position will not be a reliable indication of the

equilibrium position of an atom. In some cases the relative

positions of the atoms may give reliable estimates of equili-

brium bond lengths, as was seen for the rp C—D distances in

nitromethane. In UPA this is not the case and it is clear that

more studies will be required to understand the types of

systems where large differences are likely to be found.

Nevertheless, the use of anharmonic Debye–Waller factors

and the determination of most probable positions should be

encouraged. Not only will they reduce R factors and improve

reliability of structures but they can also shed more light on

the complex behaviour of atoms in some systems. In using

anharmonic PDFs to study the proton’s migration in UPA we

learn a considerable amount of information. Previous work on

UPA has used theory to shed further light on this behaviour

(Wilson & Morrison, 2002; Morrison et al., 2005; Fontaine-

Vive et al., 2006). However, if sufficient quality data are

collected then the anharmonicity and temperature depen-

dence of the potential could be studied experimentally.

5. Conclusion

There are a variety of different types of atomic positions that

can be determined by a refinement or are otherwise of interest

to structural scientists. The comparison of different types of

structure parameters has been made possible for the first time

using MD-derived data. From MD simulations of three

different molecules, numerical probability density functions

have been determined and then used to assess the meaning of

the different parameters. The effect of different models of

thermal motion on the value of the mean atomic positions and

the refined covariance matrix has been studied. For systems

with strong anharmonicity the values fitted to harmonic

models deviate significantly from the ‘true’ statistical value

evaluated numerically from the model data sets, affirming that

the physical meaning of the fitting parameters is not always

assured.

In addition, the simulations show large differences between

the equilibrium and fitted most probable positions of atoms

for some molecules. This suggests that experimentally deter-

mined probable positions will not give suitable estimates of

equilibrium positions. However, the most probable C—D

distances in nitromethane are far closer to their equilibrium

values than their mean bond lengths. In UPA the most prob-

able and equilibrium bond lengths do not agree but their

comparison does provide more insights into the nature of the

proton migration in this system.

It should be stressed that the present study is limited to only

a few compounds. A broader study is necessary for firm

conclusions, and the greater use of anharmonic Debye–Waller

factors in experimental refinements would also shed further

light on the differences between anharmonic and harmonic

means and variances. From a theoretical standpoint, more

insights into the differences between the probable and equi-

librium positions could be garnered by combining the three-

dimensional MD-derived PDFs to obtain the full ð3N � 3Þ

PDF, whose maximum should correspond better with the

equilibrium geometry. However, this would be quite difficult

to achieve in practice for nitromethane and UPA but for

systems like UPA the nine-dimensional PDF of the O—H� � �O

fragment may prove just as useful. This sort of approach and

application of the method to a wider range of systems is the

focus of our continuing work in this area.
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